
An Opportunistic Resource Sharing and
Topology-Aware Mapping Framework for Virtual

Networks
Sheng Zhang†, Zhuzhong Qian†, Jie Wu‡, and Sanglu Lu†

† State Key Lab. for Novel Software Technology, Nanjing University, China
‡ Department of Computer and Information Sciences, Temple University, USA
† zhangsheng@dislab.nju.edu.cn, {qzz,sanglu}@nju.edu.cn, ‡ jiewu@temple.edu

Abstract—Network virtualization provides a promising way
to overcome Internet ossification. A major challenge is virtual
network mapping, i.e., how to embed multiple virtual network
requests with resource constraints into a substrate network, such
that physical resources are utilized in an efficient and effective
manner. Since this problem is known to be NP-complete, a variety
of heuristic algorithms have been proposed. In this paper, we re-
examine this problem and propose a virtual network mapping
framework, ORS T A, which is based on Opportunistic Resource
Sharing and Topology-Aware node ranking. Opportunistic re-
source sharing is taken into consideration at the entire network
level for the first time and we develop an online approxima-
tion algorithm, FFA, for solving the corresponding time slot
assignment problem. To measure the topology importance of
a substrate node, a node ranking method, MCRank, based on
Markov chain is presented. We also devise a simple and practical
method to estimate the residual resource of a substrate node/link.
Extensive simulation experiments demonstrate that the proposed
framework enables the substrate network to achieve efficient
physical resource utilization and to accept many more virtual
network requests over time.

Index Terms—virtual network mapping; opportunistic re-
source sharing; bin packing; topology-aware; markov chain

I. Introduction

The Internet has been extremely successful in optimizing
the way we exchange and process information. However, due
to the competing policies and interests of its stakeholders
and the ever-expanding scale of Internet use, the Internet
has become resistant to fundamental changes [1, 2]. Network
virtualization has been proposed as a promising approach that
claims to overcome the current ossification of the Internet
[1–4]. In a network virtualization environment, infrastructure
providers (InPs) maintain physical/substrate networks (SNs),
while service providers (SPs) purchase slices of physical
resources (e.g., CPU, bandwidth, memory space, disk storage)
from InPs and then create customized virtual networks (VNs)
to offer their own value-added services to end users. This
decoupling of traditional Internet service providers brings a
layered service architecture, which provides flexibility and
diversity to everyone.

One of the fundamental problems in network virtualization
is the virtual network embedding/mapping (VNE) problem,
i.e., how to embed multiple virtual network requests with re-
source constraints into a substrate network, such that physical

resources are utilized in an efficient and effective manner. As
this problem is proven to be NP-complete [5], many heuristic
algorithms [6–15] have been proposed.

However, these early algorithms did not take workload
fluctuation, e.g., Auckland Data Trace [16], into consideration.
Most web-based service providers potentially target users all
over the world, so it is extremely difficult to predict the
workload before they are ready to serve end users. To cope
with a peak workload on demand, service providers often over-
purchase physical resources, which may lead to a considerable
waste of resources for a normal workload. What is more,
infrastructure providers may lose some upcoming customers
due to inefficient resource utilization.

In this paper, we re-examine the virtual network mapping
problem through two novel aspects, Opportunistic Resource
Sharing and Topology-Aware node ranking, and we propose a
novel framework, ORS T A, which provides efficient physical
resource utilization and deployment.

Inspired by opportunistic spectrum access [17], we envision
opportunistic resource sharing. Generally speaking, we model
the workload in a virtual network as the combination of a
basic sub-workload, which always exists, and a variable sub-
workload, which occurs with some probability. Then, multiple
variable sub-workloads from different virtual networks are
allowed to share some common resources to achieve efficient
resource utilization, while for a basic sub-workload, we allo-
cate the corresponding, required resources as usual.

Furthermore, topology-awareness is considered due to the
following fact: suppose that there are two substrate nodes with
the same residual CPU resources, but the residual resources
on their neighbors vary a lot. It is then reasonable to choose
the substrate node with more resources in its proximity, so as
to heuristically reduce the length of embedded virtual links.
Hence, to facilitate the efficient embedding of virtual networks,
we develop a Markov Chain-based substrate node ranking
algorithm to measure the “importance” of each substrate node
by assigning a numerical value.

The contributions of this paper are the following. (i) To the
best of our knowledge, this is the first attempt that consid-
ers virtual network mapping in the context of opportunistic
resource sharing at the entire network level. In our previous
work [18], we only considered how to share bandwidth among

multiple virtual links in a single substrate link. (ii) We propose
a formal formulation of opportunistic resource sharing-based
time slot assignment and develop an online approximation
solution, FFA. (iii) We take topology into consideration and
design a Markov chain-based node ranking method, MCRank,
to measure the “importance” of a substrate node. (iv) A simple
and practical method for estimating the residual resource of
a substrate node/link is devised. (v) Extensive simulations
validate the effectiveness of ORS T A.

The remainder of this paper is organized as follows. Sec-
tion II presents our motivation. We describe the assumptions,
notations, and problem formulation in Section III. Then in
Sections IV and V, we give an overview of ORS T A and
detailed algorithms, respectively. We evaluate ORS T A using
experiments in Section VI. Before concluding this paper in
Section VIII, we survey related work in Section VII.

II. Motivation

SPs lease physical resources from InPs to create their own
virtual networks and deploy services aimed at end users. As
we mentioned before, SPs over-purchase resources to cater
for potentially high workload rates, otherwise, customers will
suffer bad experiences when SPs purchase no more than basic
resources. In doing so, SPs may waste the additional purchased
resources due to traffic fluctuation. From the perspective of an
InP, the physical resources he owns are limited and constant
in a relatively long period, so he may wish to make efficient
use of his resources and accept more virtual networks, which
allows for more revenue.

A motivational example is illustrated as follows. Suppose
that an infrastructure provider, InP-A, owns a physical link
with a capacity of 10MB/s, and all of the other service
providers, SP-1, SP-2 and SP-3, require a virtual link with
a capacity of 4MB/s. We assume that InP-A charges 1 dollar
for 1MB/s bandwidth in unit time. In the case without oppor-
tunistic resource sharing, InP-A can accept only two requests
among three because 4MB/s ∗ 3 = 12MB/s > 10MB/s.
Therefore, InP-A gets 8 dollars per unit time in this case.

Let us take network traffic fluctuation into consideration and
assume that each 4MB/s traffic flow is composed of a basic
sub-flow 3MB/s, which always exists, and a variable sub-flow
1MB/s, which occurs with probability 0.1. Now, InP-A has an
allocation method to accept all three virtual links: by letting
three variable sub-flows share the same 1MB/s and allocating
the residual 9MB/s to three basic sub-flows. We assume that
flows in different virtual links are independent of each other,
which is reasonable, thus the probability that more than two
variable sub-flows occur (a collision) is:

1 − (0.9 ∗ 0.9 ∗ 0.9 + 3 ∗ 0.9 ∗ 0.9 ∗ 0.1) = 0.109

For variable sub-flows, InP-A should decrease the charge, e.g.,
0.1 US dollar for 1MB/s in unit time. Therefore, in this case
with opportunistic resource sharing, InP-A can get (3 + 0.1) ∗
3 = 9.3 dollars, which is more than the original income; SP-1
or SP-2 or SP-3 just needs to pay 3+0.1=3.1 dollars, which
is less than the previous charge of 4 dollars.

In general, although opportunistic resource sharing brings
performance degradation when virtual networks encounter
a peak workload, it enables better utilization of physical
resources, increases the InPs’ revenue and decreases the SPs’
rent. We believe that opportunistic resource sharing can benefit
all parties through reasonable pricing. We will not discuss how
to set prices in this paper as it is out of the scope.

III. Problem Formulation

A. Assumptions

CPU and bandwidth are the main constraints we consider
in this paper, which is the typical case in almost all of the
related literatures [6–15] on virtual network mapping so far.
To unify the resource notations, we assume that the substrate
network is based on time division multiplexing, where time
is partitioned into multiple frames of equal length, and each
frame is further divided into L equal time slots, ts1, ts2, ..., tsL.
In this way, both CPU and bandwidth can be expressed in
time slots. An SP only needs to specify the number of the
time slots for a particular virtual node/link when he makes a
request for virtual network mapping. Therefore, we will only
focus on opportunistic bandwidth sharing in Section V-A; the
results can be directly applied to opportunistic CPU sharing
without any major changes.

SPs deploy end-to-end value-added services aimed at the
end users, who access the services and leave at any time.
These dynamic customers lead to workload fluctuations and
further cause a waste of physical resources. As it is difficult
to capture the characteristics of workload fluctuation, we use
a simplified model: the work load wli of virtual network i
is composed of a basic sub-workload basici, which exists
all of the time, and a variable sub-workload variai, which
occurs with a small probability pwli in unit time. We let
bwli = basici/wli represent basic sub-workload percentage.
Workloads in different virtual networks are assumed to be
independent of each other.

We believe that this model is reasonable although it is
simple. For example, in a layered video streaming service
[19], each video frame is encoded into multiple video packets
corresponding to multiple quality layers. These video packets
are classified as a base or enhancement layer to meet different
network conditions. The workload in this scenario is very
similar to our model. We hope that this simplified model can
provide some insights on the design of other VNE algorithms.

Since both the network traffic and CPU time will fluctuate
as the workload fluctuates, both the amounts of network flow
in a virtual link and the CPU time in a virtual node are
assumed to be proportional to the workload for simplicity.
More specifically, the flow in a virtual link is composed of
a basic part, whose percentage is bwli, and a variable part,
which occurs with probability pwli. And the same statement
holds for the CPU time.

B. Notations

Substrate Network: a substrate network is modeled as a
weighted undirected graph, Gs = (N s, E s,C s, Bs), where N s

Fig. 1. Notations of virtual network embedding

is the set of substrate nodes, and E s is the set of substrate
links. C s is the set of CPU capacity attributes, and Bs is
the set of bandwidth capacity attributes. We use RCs(ns) and
RBs(es) to denote the residual CPU of substrate node ns and
residual bandwidth of substrate link es, respectively. Here, we
would mention that the amount of residual resources in the
presence of opportunistic resource sharing is not obvious, we
will discuss it later when necessary. We use Ps to denote the
set of loop-free paths in Gs.

Virtual Network: we denote a virtual network by a
weighted undirected graph, Gv

i = (Nv
i , E

v
i ,C

v
i , B

v
i , bwli, pwli) .

Nv
i is the set of virtual nodes, and Ev

i is the set of virtual
links. Cv

i is the set of CPU constraints, and Bv
i is the set

of bandwidth constraints. bwli represents the percentage of
a basic sub-workload in an overall workload . pwli means the
probability of a variable sub-workload occurring in unit time.

The notations are summarized in Table I for reference. The
notation system in this paper is similar to that in [8, 10, 20].
The principle behind these notations is that superscript indi-
cates substrate/virtual networks.

Fig. 1 shows an example of these notations. The corre-
sponding number near each vertex/edge is the CPU/bandwidth
capacity/constraint. For virtual link a − b in the VN request
Gv

1, the basic sub-traffic is 8∗0.9 = 7.2, the variable sub-traffic
is 8 − 7.2 = 0.8 and occurs with probability 0.1.

Virtual Network Mapping: virtual network mapping is
usually defined as a mapping M from Gv

i to a subset of Gs,
such that some predefined constraints are satisfied. It can be
decomposed into two major components: node mapping Mn

and link mapping Ml.
The node mapping Mn : Nv

i → N s maps a virtual node to
a substrate node, subject to: ∀nv,mv ∈ Nv

i

Mn(nv) ∈ N s

Mn(nv) =Mn(mv) iff mv = nv

RC s(Mn(nv)) ≥ Cv
i (nv)

The link mapping Ml : Ev
i → Ps maps a virtual link to a

substrate loop-free path, subject to: ∀ev = (mvnv) ∈ Ev
i

Ml(mvnv) ∈ PS (Mn(mv),Mn(nv))
RBs(Ml(mvnv)) ≥ Bv

i (ev)

In Fig. 1, the node mapping for the VN request Gv
1 is

{a → C, b → E, c → D}, and the link mapping is {(ab) →

TABLE I
Notations in this paper

Notation Meaning
Gs Substrate network
N s Set of nodes
Es Set of links
Cs Set of CPU capacity attributes
Bs Set of bandwidth capacity attributes

RCs Set of residual CPU resources
RBs Set of residual bandwidth resources
Ps Loop-free paths set
Gv

i The ith virtual network
Nv

i Set of nodes of Gv
i

Ev
i Set of links of Gv

i
Cv

i Set of CPU constraints in Gv
i

Bv
i Set of bandwidth constraints in Gv

i
bwli A basic sub-workload percentage in Gv

i
pwli Probability of a variable sub-workload in Gv

i

{CB, BE}, (bc) → {ED}, (ca)→ {DC}}. The node mapping for
the VN request Gv

2 is {d → A, e → F}, and the link mapping
is {(de)→ {AG,GF}}.

C. Objective

Virtual network mapping is done by InPs. From InPs’
standpoint, a natural objective is to increase revenue and to
decrease cost. However, an SP is only willing to pay fee
proportional to his requested resources, that is, the revenue,
R(Gv

i), of embedding a virtual network, Gv
i , can be defined as

(following the definitions in previous works [8, 10]):

R(Gv
i) = ωc ·

∑
nv∈Nv

Cv
i (nv) + ωb ·

∑
ev∈Ev

Bv
i (ev) (1)

where ωc and ωb are the weights for CPU and bandwidth,
respectively. We learn from this definition that, given a VN
request, the revenue is fixed. Therefore, in order to get more
revenue, the InP should try to accept more VN requests but
meet their resource constraints at the same time.

To this end, virtual networks should be properly and effi-
ciently deployed on top of a substrate network. Due to the
NP-completeness of the VNE problem [5], many heuristic
algorithms have been proposed. However, in this paper we
re-visit this problem from two novel aspects: opportunistic
resource sharing and topology-aware node mapping.

IV. Framework Overview

We present a high level overview of our framework,
ORS T A, as illustrated in Algorithm 1, in this section and the
details of ORS T A in the next section.

Initially, we compute the amount of residual resources for
each substrate node/link (lines 3-4 of Alg. 1), i.e., the available
CPU/bandwidth capacity. Note that, when we perform oppor-
tunistic resource sharing, the estimation of residual resources
becomes complicated; we will explain our method in Sec-
tion V-B. Afterwards, inspired by the PageRank algorithm [21]
which is used by Google to assign a numerical rank to every
web page, we devise a similar ranking algorithm based on
Markov chain [22] to compute the rank of each substrate node,
denoted by MCRank (line 5 of Alg. 1), which is illustrated

in Section V-C. This MCRank takes both residual resources
and topology into consideration in an effort to improve the
deployment of virtual networks.

When a VN request arrives, we adopt the following simple
greedy heuristic. In the node mapping phase (lines 7-10 of Alg.
1), all virtual nodes are sorted in a decreasing order of their
CPU constraints and are placed in a queue; then, we map each
virtual node in the sorted queue to the unused substrate node
with the highest MCRank. In the link mapping phase (lines
11-13 of Alg. 1), we map each virtual link to the k-shortest
path between its end hosts (for increasing k) to minimize the
length of the substrate paths that virtual links are mapped to.

Then, considering workload fluctuation, we employ op-
portunistic resource sharing to efficiently utilize substrate
resources at the expense of collisions (line 14 of Alg. 1).
We formulate this opportunistic resource sharing-based local
time slot assignment problem as an optimization problem and
devise an online approximation algorithm, which is inspired
by the bin packing problem [23]. The details are presented in
section V-A.

When a virtual network request is successfully embed-
ded, the framework ORS T A updates RCs(ns), RBs(es) and
MCRank(ns), and waits for another virtual network request.

Algorithm 1 The Opportunistic Resource Sharing and
Topology-Aware Mapping Framework (ORS T A)

1: Initialization Phase
2: while true do
3: ∀ns ∈ N s, update RCs(ns)
4: ∀es ∈ E s, update RBs(es)
5: Run MCRank(γ)
6: Wait until a VN request, say Gv

i , arrives
7: Qs ← sorted virtual nodes in Gv

i according to Cv
i

8: for i = 0 to Qs.length do
9: Map Qs[i] to the unused substrate node with the

highest MCRank
10: end for
11: for all es ∈ E s do
12: Map es to the k-shortest path for increasing k
13: end for
14: ∀ns ∈ N s and ∀es ∈ E s, run FFA(pth)
15: end while

V. Detailed Algorithms
A. Opportunistic Resource Sharing-based Local Time Slot
Assignment

1) Preliminaries: in ORS T A, the virtual network embed-
ding is completed after line 13 of Alg. 1 in a macroscopical
sense, i.e., node-to-node and link-to-path matching is accom-
plished. However, at a single node/link level, we also need
to deal with opportunistic resource sharing-based local time
slots assignment. Note that both CPU and bandwidth can be
represented as time slots, so we focus on assigning time slots
in a substrate link among multiple virtual links. The results
can be applied to a substrate node without any major changes.

Fig. 2. Time slot assignment in a virtual link

Opportunistic resource sharing for virtual network mapping
is proposed in [18] for the first time. In that paper, we studied
opportunistic bandwidth sharing in a single physical link and
devised two heuristic algorithms from different perspectives.
Here, we employ the results from our previous work and im-
prove them by developing an online approximation algorithm.

As we assumed, both the network traffic and the CPU busy
time are proportional to the workload; for a virtual link, ev

i ,
from virtual network Gv

i , the traffic is composed of basic
sub-traffic, which equals bwli · Bv

i (ev), and variable sub-traffic,
which equals (1 − bwli) · Bv

i (ev) and happens with probability
pwli. For basic sub-traffic, the InP has no choice but to allocate
the required number of time slots, thus we will only consider
variable sub-traffic in the subsequent discussion.

To conserve time slots for upcoming requests, we prefer
that each time slot can be assigned to as much variable sub-
traffic as possible. However, when more than one variable sub-
traffic occurs at the same time slot, a collision happens. To
break the tradeoff between utilization and collision, we have
the following optimization problem.

Problem 1: Given a probability threshold, pth, and a set of
n variable sub-traffic from ev

i , i = 1, 2, . . . , n, each requires
(1 − bwli) · Bv

i (ev
i) time slots with probability pwli. Find

an assignment of time slots for the variable sub-traffic to
minimize the number of time slots used, such that: 1) for
each variable sub-traffic flow from ev

i , the number of time
slots assigned to it is at least (1−bwli) ·Bv

i (ev
i); 2) the collision

probability at each time slot is no more than pth.

The collision probability can be obtained as follows. Let Xi

indicate whether variable sub-traffic in ev
i occurs, i.e., Pr[Xi =

1] = pwli. For time slot k, let Dk denote the set of variable
sub-traffic that it is assigned to. Then, the probability of a
collision happening at slot k, denoted by Prcollision(Dk), is:

Prcollision(Dk) = Pr[
∑
i∈Dk

Xi ≥ 1]

= 1 −
∏
i∈Dk

(1 − pwli) −
∑
i∈Dk

(pwli ·
∏

j∈Dk , j,i

(1 − pwl j))
(2)

Fig. 2 shows a feasible assignment. ts1 can be assigned
to three sub-traffic flows from ev

1, ev
2, and ev

3 because they
collide with a probability 0.064 (by Eq. (2)), which is less then
pth = 0.1. ts3 can not be assigned to ev

1 and ev
4 simultaneously

because the collision probability is 0.3 · 0.4 = 0.12 > pth.

2) A first-fit-based online approximation algorithm: the
design of our algorithm is based on the following observation:
when each variable sub-traffic requires one single time slot,
i.e., (1 − bwli) · Bv

i (ev
i) = 1 for all i, Problem 1 is very similar

to bin packing1. However, the occupied size in each bin is the
sum of the sizes of all of the packed items in bin packing,
whereas in Problem 1, the collision probability in a time slot,
as shown in Eq. 2, is neither linear nor multiplicative.

First-fit [23] is a heuristic algorithm with an approximation
factor of 2 for bin packing. In first-fit, items are considered in
an arbitrary order, and for each item, first-fit attempts to place
the item in the first bin that can accommodate the item. If not,
the item is placed into a new bin. First-fit can be executed
online and has a low time complexity.

Their resemblance sheds light on the design of FFA, which
is based on the core idea of first-fit. The FFA Algorithm is
presented in Algorithm 2.

Algorithm 2 FFA(pth)
1: Wait until variable sub-traffic from ev

i arrives
2: counter ← 0
3: While(counter < (1 − bwli) · Bv

i (ev
i))

4: Let pos← 0
5: While(Collision(tspos, ev

i) > pth)
6: pos← pos + 1
7: Assign tspos to ev

i
8: counter ← counter + 1

3) Incremental Calculation: Collision(tspos, ev
i) is a func-

tion that returns the probability of a collision at tspos if tspos is
assigned to ev

i . To calculate the collision probability efficiently,
we adopt the following incremental approach. Let Dk be the
set of variable sub-traffic that tsk is currently assigned to. Also
let:

A(Dk) =
∏
i∈Dk

(1 − pwli)

B(Dk) =
∑
i∈Dk

(pwli·
∏

j∈Dk , j,i

(1 − pwl j))

then, the collision probability Prcollision(Dk) = 1 − A(Dk) −
B(Dk). When slot k is to be assigned to a new sub-traffic from
ev

h, then:

A(Dk ∪ {ev
h}) = A(Dk)(1 − pwlh)

B(Dk ∪ {ev
h}) = B(Dk)(1 − pwlh) + A(Dk) · pwlh

(3)

This can be used to calculate the new collision probability.
4) Approximation Ratio: we denote by S f f a the solution

generated by FFA, and by S opt, the optimal solution. Abusing
the notation a bit, we will also use S f f a and S opt to denote
the number of time slots needed by these two solutions,
respectively, if no confusion can be caused. Let,

pmin = min1≤i≤n pwli, dmin =min1≤i≤n((1 − bwli) · Bv
i (ev

i))
pmax = max1≤i≤n pwli, dmax =max1≤i≤n((1 − bwli) · Bv

i (ev
i))

1Bin packing [23]: given n items with sizes s1,s2,...,sn ∈ (0, 1], find a
packing method in unit-sized bins that minimizes the number of bins used.

Case I: we use a particular variable sub-traffic flow, which
requires dmin time slots and occurs with probability pmin,
to replace all of the variable sub-traffic. Then, the maximal
allowable number of sub-traffic, volI , in a substrate slot is
determined by:

1 − (1 − pmin)volI − volI · pmin · (1 − pmin)volI−1 = pth

Hence, in this case, the number of time slots required by
all of the n sub-traffic is:

S I =
n

volI
· dmin

Case II: we use another particular variable sub-traffic flow,
which requires dmax time slots and occurs with probability
pmax, to replace all of the variable sub-traffic. Then, the
maximal allowable number of sub-traffic, volII , in a substrate
slot is determined by:

1 − (1 − pmax)volII − volII · pmax · (1 − pmax)volII−1 = pth

Similarly, the number of time slots required by all of the n
sub-traffic in this case is:

S II =
n

volII
· dmax

Theorem 1: S f f a ≤ (dmax · volI)/(dmin · volII) · S opt

Proof: it is straightforward to see that:

0 < S I ≤ S opt ≤ S f f a ≤ S II

then:
S f f a

S opt
≤ S II

S I
=

dmax · volI

dmin · volII

The theorem follows immediately.

B. Residual Resource Estimation

The amount of the residual resource in a substrate node/link
is an important metric in VNE process. In a traditional sce-
nario, where opportunistic resource sharing is not considered,
the residual CPU, RC s(ns), of a substrate node, ns, and residual
bandwidth, RBs(es), of a substrate link, es, are defined as:

RCs(ns) = C s(ns)−
∑
∀nv

fc(nv, ns)

RBs(es) = Bs(es)−
∑
∀ev

fb(ev, es)

where fc(nv, ns) denotes the CPU resources of ns allocated
to nv, and fb(ev, es) denotes the bandwidth resources of es

allocated to ev.
However, with opportunistic resource sharing, the residual

resource becomes complicated. Fig. 3 shows a snapshot of the
time slot allocation in a substrate link. Intuitively, the residual
resource consists of the right part and the available room in
the middle part which is allocated to variable sub-traffic. The
former is easy to compute while the latter is not so obvious.

Suppose that the capacity of a substrate link, es, is Bs(es),
and there are L time slots in a frame. There are b slots allocated
to basic sub-traffic and another d slots allocated to variable

Fig. 3. A snapshot of time slot allocation in a substrate link

sub-traffic. Therefore, RBs(es) is (L− b− d)/L · Bs(es) plus the
available room in the middle d slots.

A simple and practical measurement of residual room, rbk,
in a single time slot, tsk (b < k < b + d + 1), is defined as the
probability of a variable sub-traffic flow that would cause the
collision probability to be higher than pth if tsk is assigned to
it. Hence, by Eq. (3), we have:

1 − A(Dk)(1 − rbk) − (B(Dk)(1 − rbk) + A(Dk) · rbk) = pth

That is:

rbk =
A(Dk) + B(Dk) + pth − 1

B(Dk)
=

pth − Prcollision(Dk)
B(Dk)

(4)

Thereby, the available room in the middle d slots that are
allocated to variable sub-traffic is:

Bs(es)
L
·

b+d∑
k=b+1

rbk

In summary:

RBs(es) =
L − b − d

L
· Bs(es) +

Bs(es)
L
·

b+d∑
k=b+1

rbk

= (L − b − d +
b+d∑

k=b+1

pth − Prcollision(Dk)
B(Dk)

)
Bs(es)

L

(5)

RC s(ns) can be analyzed in a similar way.

C. Markov Chain-based Node Ranking (MCRank)

1) Preliminaries: PageRank [21] nicely reflects the popu-
larity and quality of web pages. In PageRank, the rank of a
page measures the “importance” of that page. A page has a
higher rank if it is pointed to by more highly-ranked pages.
The more pages that one page points to, the less its influence
on their rankings is. This intuitive idea can be formalized as
follows. The World-Wide-Web is treated as a directed graph,
with web pages as vertices and hyper-links as directed edges.
The rank of a page p, denoted by rank(p), is supposed to
satisfy:

rank(p) =
∑

g:(g,p)∈E

rank(g)
d+(g)

(6)

where d+(g) means the number of edges going out of page g.
Note that the sum is over edges going into p.

Inspired by PageRank, we consider using a similar method
to measure the topology importance of a substrate node. To
understand the topology importance, suppose that there are
two substrate nodes with the same residual resources, but
the resources of their neighbors (or neighbors of neighbors)

vary greatly. In order to heuristically decrease the length of
virtual links (substrate paths), we prefer the substrate node
with more resources in its vicinity. Therefore, we propose in
the following, a Markov chain-based node ranking method,
MCRank.

2) MCRank: we define the resource, R(ns), of a substrate
node, ns, as the product of its residual CPU resource and a half
of the collective bandwidth resources of its outgoing links:

R(ns) = RCs(ns) ·
∑

es∈NeighE(ns)

1
2

RBs(es)

where NeighE(ns) denotes the set of links that are adjacent
to ns. The coefficient 1/2 can be seen as the bandwidth of a
link is equally shared between its endpoints, though it is not
in fact. We then normalize Rs(ns).

NormR(ns) =
Rs(ns)∑

ms∈N s Rs(ms)
(7)

Intuitively, if the MCRank(ns) of a substrate node, ns, is
high, the possible reasons are: (i) the node itself has ample
resources; (ii) its neighbors have abundant resources. Hence,
we define the MCRank(ns) as:

MCRank(ns) = w1 · MCRank(ns)

+ w2 ·
∑

ms∈NeighN(ns)

NormR(ns)∑
hs∈NeighN(ms) NormR(hs)

· MCRank(ms)

(8)
where w1 and w2 are the corresponding weights.
NormR(ns)/

∑
hs∈NeighN(ms) NormR(hs) can be seen as the

impact of ms on ns. Let P be a matrix with rows and columns
corresponding to substrate nodes, and ∀ns,ms ∈ N s:

P(ms, ns) =


w1 if ms = ns

w2 · NormR(ns)∑
hs∈NeighN(ms) NormR(hs) if (ms, ns) ∈ E s

0 otherwise

(9)

Then, Eq. (8) can be expressed in the following matrix form:

MCRank · P = MCRank (10)

Let w1 + w2 = 1; it is easy to verify that P is stochastic, i.e.:∑
ns∈N s

P(ms, ns) = P(ms,ms) +
∑

ns∈NeighN(ms)

P(ms, ns) = 1

Hence, MCRank is actually a stationary distribution of the
Markov chain with transition matrix P. The following theorem
gives the existence of a stationary distribution.

Theorem 2: the Markov chain, determined by P, has a
stationary distribution.

Proof: it is sufficient to prove that: (i) MCRank has finite
states, as there are a finite number of substrate nodes; (ii) the
substrate network is strongly connected, so the Markov chain
is irreducible; (iii) the substrate node iteslf has an impact on
its MCRank, i.e., the chain is a lazy random walk, so it is
aperiodic. The theorem follows immediately.

Based on [21], we give our algorithm to calculate the
stationary distribution, i.e., MCRank, in Algorithm 3, where
γ serves as a threshold to control iterations.

Algorithm 3 MCRank(γ)
1: MCRank ← NormR, i← 0
2: repeat
3: MCRanki+1 ← MCRanki · P
4: δ← ∥MCRanki+1 − MCRanki∥1
5: i← i + 1
6: until δ < γ

TABLE II
Parameters

E[Cv] Expectation of CPU requirement on a virtual node
E[Bv] Expectation of bandwidth requirement on a virtual link
E[bwl] Expectation of a basic sub-workload percentage
E[pwl] Expectation of a variable sub-workload occurring probability

VI. Experimental Evaluation

In this section, we first describe our evaluation environment,
then present main evaluation results.

A. Evaluation Environment

As network virtualization is still an open field, our eval-
uations follow settings similar to [7, 8, 10–12, 20]. We use
ANSNET and ARPANET as the substrate network topologies.
Both the CPU capacity at substrate nodes and bandwidth
capacity at substrate links are generated uniformly from
[50,100]. The arrivals of VN requests are modeled as a Poisson
process with an average rate of 5 requests per minute. For
each virtual network, the number of nodes is determined by
a uniform distribution between 2 and 10; each pair of virtual
nodes is connected with probability 0.5. The lifetime of each
virtual network is assumed to be exponentially distributed with
an average of 10 minutes. The collision probability threshold
is set to 0.1 throughout our evaluation. We summarize the
parameters that we vary in our evaluations in Table II.

Comparing our framework with previous research on virtual
network mapping is difficult because it is the first attempt
that considers virtual network mapping in the context of
opportunistic resource sharing at the entire network level.
Therefore, our evaluation focuses primarily on quantifying the
benefits of opportunistic resource sharing and topology-aware
node ranking. The notations that we use to refer to different
algorithms are enumerated in Table III. In the following
subsection, we present the average results after running over
ANSNET 100 times. (Results over ARPANET are similar and
omitted due to space limitation.)

B. Evaluation Results

We first present the comparison results between ORS T A,
T A, ORS , and Greedy (refer to Table III). Figs 4, 5, and
6 show the acceptance ratio over time, CDF (cumulative
distribution function) of node utilization ratios, and link uti-
lization ratios, respectively. In these experiments, both E[Cv]
and E[Bv] are set to be 10; E[bwl] = 0.5; E[pwl] = 0.15,
and w1 = 0.7. In Fig. 4, the acceptance ratio of ORS T A
is higher than all of the other algorithms, which indicates
that opportunistic resource sharing and topology-aware node

ranking indeed improves the deployment of virtual networks
and further enables the substrate network to accept more VN
requests. We also notice that the acceptance ratio of these four
algorithms is averagely less than 0.4, which is a little low. The
main reason behind this may be because links in the substrate
network (ANSNET has 32 nodes and 58 links, ARPANET
has 20 nodes and 32 links) are sparse, while each pair of
nodes in a virtual network is connected with probability 0.5.
This leads to the topology becoming the dominating factor in
virtual network embedding.

Fig. 4 also shows that the acceptance ratio of T A is
much higher than ORS and Greedy, while ORS achieves
nearly the same acceptance ratio as Greedy. This implies that
distinguishing between substrate nodes is helpful in virtual
network mapping while opportunistic resource sharing is not
significantly effective when there is no topology-aware node
ranking. In Figs 5 and 6, the node/link utilization ratio means
the ratio of the allocated resources to the capacity of a substrate
node/link. We observe similar results where ORS T A performs
better than T A, ORS , and Greedy.

We then try to evaluate the effects of w1, E[Cv], E[Bv],
E[bwl], and E[pwl], respectively. Fig. 7 shows the comparison
between ORS T As with different w1 settings. We see that
ORS T A(w1 = 0.5) achieves the highest acceptance ratio while
ORS T A(w1 = 0.3) gets the lowest. This is anticipated because
in MCRank, “w1 = 0.5” indicates the rank of a substrate
node is half determined by itself; “w1 = 0.3” causes the
rank of a substrate node to be greatly dominated by the
amount of residual resources of other nodes. However, the
difference is not considerably significant, which means the
stationary distribution of our Markov chain nicely represents
the importance of substrate nodes, irrespective of whether w1
is large or small.

In Fig. 8, we show the results of E[Cv] and E[Bv]. We
note that in the case when E[Cv] and E[Bv] are small, the
acceptance ratio is high. However, with E[Cv] and E[Bv]
increasing, the substrate network resources become scarce,
which causes more and more VN requests to be rejected. In
this figure, ORS T A(E[Cv] = E[Bv] = 15) achieves almost the
same acceptance ratio as ORS T A(E[Cv] = E[Bv] = 20). A rea-
sonable explanation is that, E[Cv] = E[Bv] = 15 is sufficiently
large compared to the average amount of CPU/bandwidth
capacities of substrate nodes/links, i.e., 75.

Fig. 9 illustrates the effects of E[bwl] and E[pwl]. Remem-
ber that bwl is the percentage of a basic sub-workload in the
overall workload, and pwl is the probability of a variable
sub-workload happening. In this figure, ORS T A(E[bwl] =
0.30, E[pwl] = 0.15) presents the best performance, and
ORS T A(E[bwl] = 0.50, E[pwl] = 0.05) achieves the second
best. This is to say, bwl plays a more important role than pwl.

In summary, our proposed framework, ORS T A, increases
the acceptance ratio through opportunistic resource sharing,
which enables the substrate network to support more VN
requests and topology-aware node ranking, which treats sub-
strate nodes differently to shorten the length of substrate paths
that virtual links are mapped to.

TABLE III
Algorithms in Comparison

Notation Description
ORS T A The entire framework, including opportunistic resource sharing, topology-aware ranking, and greedy node/link mapping

ORS A partial framework, including opportunistic resource sharing, and greedy node/link mapping
T A A partial framework, including topology-awareness, and greedy node/link mapping

Greedy The traditional greedy embedding algorithm, including greedy node/link mapping

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

Time

ORSTA
TA

ORS
Greedy

Fig. 4. Acceptance ratio over time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
D

F

Node Utilization Ratio

ORSTA
TA

ORS
Greedy

Fig. 5. CDF of node utilization ratios

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
D

F

Link Utilization Ratio

ORSTA
TA

ORS
Greedy

Fig. 6. CDF of link utilization ratios

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

A
c
c
e
p

ta
n
c
e
 R

a
ti
o

Time

ORSTA(w1=0.3)
ORSTA(w1=0.5)
ORSTA(w1=0.7)
ORSTA(w1=0.9)

Fig. 7. Effect of w1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

A
c
c
e
p

ta
n
c
e
 R

a
ti
o

Time

ORSTA(E[C
v
]=E[B

v
]=05)

ORSTA(E[C
v
]=E[B

v
]=10)

ORSTA(E[C
v
]=E[B

v
]=15)

ORSTA(E[C
v
]=E[B

v
]=20)

Fig. 8. Effect of E[Cv] and E[Bv]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

A
c
c
e
p

ta
n
c
e
 R

a
ti
o

Time

ORSTA(E[bwl]=0.50,E[pwl]=0.15)
ORSTA(E[bwl]=0.50,E[pwl]=0.05)
ORSTA(E[bwl]=0.50,E[pwl]=0.25)
ORSTA(E[bwl]=0.30,E[pwl]=0.15)
ORSTA(E[bwl]=0.70,E[pwl]=0.15)

Fig. 9. Effect of E[bwl] and E[pwl]

VII. RelatedWork

A. Network Virtualization

In networking literature, virtual private networks (VPNs),
overlay networks, and network virtualization deal with select-
ing nodes to construct logical paths. However, the differences
are: (i) VPNs only need to determine the locations of logical
links while network virtualizaiton simultaneously considers
locations of logical nodes and links [7, 8]; (ii) only link
constraints are considered in VPNs while both link and node
constraints are considered in network virtualization [7, 8];
(iii) overlays are designed in the application layer on top
of the network layer [4]. The most relevant work in the
overlay networks is [24], where Fan et al. investigated the
dynamic topology configuration problem in service overlay
networks. They first acquired general properties of the optimal
reconfiguration topology by observing small cases, and then
used observations as heuristics to design algorithms for large-
scale cases of networks.

In network virtualization, Ishibashi et al. [25] envisioned
cognitive radio-based virtual wireless networks and tried to
make efficient use of residual wasted bandwidth of the primary
service providers. Shiomoto et al. [26] developed a network
virtualization method to represent the resources in the optical
backbone network of the service network. Zhu et al. [27] tried
to lower the barrier for deploying wide-area services through

introducing the connectivity layer, which, in fact, is a special
virtual network that provides a necessary geographic footprint,
reliability, and performance. He et al. [28] proposed DaVinci
architecture, where resource allocation is dynamic and used
optimization theory to show that adaptive resource allocation
can be stable and can maximize the aggregate performance
across virtual networks.

B. Virtual Network Embedding
To cope with the NP-hardness of the VNE problem, re-

searchers resorted to heuristics to reduce computational time.
Ricci et al. [6] considered only bandwidth constraints and

proposed the Assign algorithm based on simulated annealing
with the assumption that the substrate node can only be used
by one virtual node. Lu et al. [9] developed a method for the
VNE problem in a cost-efficient way and attempted to find
the best topology in a family of backbone-star topologies.
Zhu et al. [7] assumed that the substrate nodes and links
have unlimited CPU and bandwidth resources and focused
on load balancing and on-demand assignments. Yu et al. [10]
assumed that SN supports path splitting and proposed a two-
stage online algorithm: firstly, map the virtual nodes greedily,
then deal with link mapping based on the multi-commodity
flow problem. Lischka et al. [11] proposed a backtracking
algorithm based on subgraph isomorphism detection, but re-
stricted the length of the substrate paths. Chowdhury et al. [8]

proposed a VNE algorithm with better coordination between
node mapping and link mapping based on linear programming
and deterministic/randomized rounding, but added location
constraints to simplify the problem. Chowdhury et al. [13]
presented a policy-based decentralized inter-domain virtual
network embedding framework and also designed a location-
aware VN request forwarding mechanism. Zhang et al. [20]
focused on flexibility and proposed a simulated annealing-
based algorithm to control the tradeoff between result accuracy
and the running time of the embedding algorithm. Zhang et
al. [18] investigated the opportunistic bandwidth sharing in a
single physical link among multiple virtual links from different
VNs; however, in this paper, we study opportunistic resource
sharing at the entire network level.

C. Topology-Awareness in Virtual Network Mapping

To the best of our knowledge, there are only two research
articles [12, 14] that incorporate topology into virtual network
embedding. Butt et al. [14] differentiated substrate resources
by introducing scaling factors: Critical Index, which measures
the likelihood of a residual substrate network partition due to
its unavailability, and Popularity Index, which measures “how
many different VNs are affected when a link or a node is
unavailable”. Cheng et al. [12] formulated a Markov random
walk model to compute the topology-aware resource ranking
of nodes in a substrate network; however, in this paper, we
observe that we only need to consider a walk from a substrate
node to itself or one of its neighbors because the impact is
recursive in a Markov chain.

VIII. Conclusions

This paper re-examines the virtual network mapping prob-
lem in network virtualization from two novel perspectives,
i.e., opportunistic resource sharing and topology-aware node
ranking, which are incorporated into our proposed framework,
ORS T A. ORS T A contains three main parts, opportunistic
resource sharing-based local time slot assignment, estimation
of residual resources and topology-aware node ranking. The
effectiveness of our framework is confirmed by extensive
simulations. We are currently seeking the proof of the NP-
Completeness of Problem 1 and are exploring methods of
scheduling packets when a collision occurs in a time slot.

Acknowledgments

We would like to thank Yitong Yin for his Randomized
Algorithms and Combinatorics courses, and the anonymous
reviewers for their insightful suggestion.

This work is supported in part by the National NSF
of China under Grant No. 61073028 and No. 61021062;
Key Project of Jiangsu Research Program under Grant
No.BE2010179; Jiangsu Natural Science Foundation under
Grant No. BK2011510; the National 973 Basic Research
Program of China under Grant No. 2009CB320705 and
No. 2011CB302800; US NSF grants ECCS 1128209, CNS
1065444, CCF 1028167, CNS 0948184, and CCF 0830289.

References
[1] J. Turner and D. Taylor, “Diversifying the Internet,” in IEEE GLOBE-

COM 2005, vol. 2, 2-2 2005, pp. 6 pp. –760.
[2] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the

Internet impasse through virtualization,” Computer, vol. 38, no. 4, pp.
34 – 41, april 2005.

[3] N. Feamster, L.-X. Gao, and J. Rexford, “How to lease the Internet in
your spare time,” ACM SIGCOMM Comput. Commun. Rev., vol. 37,
no. 1, pp. 61–64, 2007.

[4] N. Chowdhury and R. Boutaba, “A survey of network virtualization,”
Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[5] D. G. Andersen, “Theoretical approaches to node assignment,” Dec.
2002, unpublished Manuscript.

[6] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed
mapping problem,” ACM SIGCOMM Comput. Commun. Rev., vol. 33,
no. 2, pp. 65–81, 2003.

[7] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in IEEE INFOCOM 2006,
april 2006, pp. 1 –12.

[8] N. Chowdhury, M. Rahman, and R. Boutaba, “Virtual network embed-
ding with coordinated node and link mapping,” in IEEE INFOCOM
2009, 19-25 2009, pp. 783 –791.

[9] J. Lu and J. Turner, “Efficient mapping of virtual networks onto a shared
substrate,” Washington University, Tech. Rep. WUCSE-2006-35, 2006.

[10] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, 2008.

[11] J. Lischka and H. Karl, “A virtual network mapping algorithm based on
subgraph isomorphism detection,” in ACM VISA 2009, 2009, pp. 81–88.

[12] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
SIGCOMM Comput. Commun. Rev., vol. 41, pp. 38–47, April 2011.

[13] M. Chowdhury, F. Samuel, and R. Boutaba, “Polyvine: policy-based vir-
tual network embedding across multiple domains,” in ACM SIGCOMM
VISA 2010. New York, NY, USA: ACM, 2010, pp. 49–56.

[14] N. Butt, N. Chowdhury, and R. Boutaba, “Topology-awareness and re-
optimization mechanism for virtual network embedding,” in Networking,
2010, pp. 27–39.

[15] I. Houidi, W. Louati, D. Zeghlache, P. Papadimitriou, and L. Mathy,
“Adaptive virtual network provisioning,” in ACM SIGCOMM VISA 2010.
ACM, 2010, pp. 41–48.

[16] Auckland Data Trace. http://pma.nlanr.net/traces/long/auck2.html.
[17] Q. Zhao and B. Sadler, “A survey of dynamic spectrum access,” IEEE

Signal Processing Magazine,, vol. 24, no. 3, pp. 79–89, May 2007.
[18] S. Zhang, Z. Qian, B. Tang, J. Wu, and S. Lu, “Opportunistic band-

width sharing for virtual network mapping,” in IEEE Globecom 2011,
December 2011.

[19] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the h.264/avc standard,” IEEE TCSVT, vol. 17, no. 9,
pp. 1103 –1120, sept. 2007.

[20] S. Zhang, Z. Qian, S. Guo, and S. Lu, “FELL: A flexible virtual network
embedding algorithm with guaranteed load balancing,” in IEEE ICC
2011, June 2011.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Technical Report
1999-66, November 1999.

[22] “Markov chain,” http://en.wikipedia.org/wiki/Markov chain.
[23] V. V. Vazirani, Approximation Algorithms. Berlin: Springer, 2003.
[24] J. Fan and M. H. Ammar, “Dynamic topology configuration in service

overlay networks: A study of reconfiguration policies,” in IEEE INFO-
COM 2006, april 2006, pp. 1 –12.

[25] B. Ishibashi, N. Bouabdallah, and R. Boutaba, “Qos performance
analysis of cognitive radio-based virtual wireless networks,” in IEEE
INFOCOM 2008, april 2008, pp. 2423 –2431.

[26] K. Shiomoto, I. Inoue, and E. Oki, “Network virtualization in high-speed
huge-bandwidth optical circuit switching network,” in IEEE INFOCOM
2008 Workshops, april 2008, pp. 1 –6.

[27] Y. Zhu, R. Zhang-Shen, S. Rangarajan, and J. Rexford, “Cabernet:
connectivity architecture for better network services,” in ACM CoNEXT
2008. New York, NY, USA: ACM, 2008, pp. 64:1–64:6.

[28] J. He, R. Zhang-Shen, Y. Li, C.-Y. Lee, J. Rexford, and M. Chiang,
“Davinci: dynamically adaptive virtual networks for a customized inter-
net,” in ACM CoNEXT 2008. ACM, 2008, pp. 15:1–15:12.

